您好,游客 登录 注册 站内搜索
背景颜色:
阅读论文

例说在实际问题中的线性代数概念及理论

来源:论文联盟  作者:李巨成 [字体: ]

例说在实际问题中的线性代数概念及理论

线性代数的产生:线性代数是数学的一个重要分支,主要以行列式、矩阵、线性方程组、向量组等基本概念为基础,以定理为依托,线性变换为手段,利用矩阵、线性方程组理论,通过对大量数据的处理,得到最优化的结果或简明的表示。在实际生活各领域都具有非常强的实用性。在线性代数的学习过程中,学生常提出学线性代数从何而来又有什么用的问题,多数教师只是将定义、定理泛泛讲一讲,而忽略了他的出处,实际上定义、定理的产生不是数学家的杜撰,而是来源于现实生活实际,能够找到它的溯源。
  一、行列式的几何意义
  一维空间即数轴上,向量表示一有向线段,可以求长度。二维空间两向量可以围成一平行四边形,可以求面积。三维空本文由论文联盟http://wWw.LWlm.cOm收集整理间三个向量可以围成一六面体,可以求体积。
  有了行列式概念及理论,为进一步研究矩阵打下坚实的基础。
  二、矩阵概念的产生
  例如:某手机营销公司旗下有X、Y两个店,分别经营苹果、华为、三星、金立四品牌手机一月份销售数据如下表:
  显然两个月的销售数据就是一、二月销售数据对应相加。这就是矩阵的加法。进一步可以定义矩阵的数乘、矩阵的乘法。从实际问题中分离出来,就定义了一般意义上的纯数学概念。
  三、线性方程组理论
  线性方程组是线性代数中一重要理论,贯穿于线性代数课程的大部分内容,知识理论体系严谨、完善、抽象。分化为线性方程组、矩阵方程、向量方程,三个理论体系,又完善地融合于一体,学起来有些困难。但是,线性方程的提出,同样可以找到它的溯源。
  例如:近年来,车辆的增加,北京在有些道路设置了单行道,以解决拥堵现象,如下图所示(数据为某一时间段内的统计),假设每个交叉路口进入和离开的车辆相等,计算每条道路的车辆情况由问题,得出如下方程关系:[x1+x2=650x1-x4+x5=450x2+x3=340x4-x3=300]
  这就是由n个未知数建立了m個方程的一般方程关系,在这种方程关系下,线性代数建立了完善的方程理论,进一步研究矩阵、矩阵的秩、矩阵的初等变换,向量、向量组、向量组的秩、最大无关组。使得线性方程组、矩阵方程、向量方程有了完美的融合,建立了严谨的线性代数理论。
  结论:通过对行列式、矩阵、线性方程组三个概念的溯源,可以说,线性代数完美理论体系的建立,不是数学家异想天开杜撰而成,而是来源于现实生活实际反之,又广泛应用社会各领域,为人类所应用。

欢迎浏览更多论文联盟首页理学论文数学论文文章
收藏 & 分享 推荐 打印 | 录入:pyuanmm

本文评论   查看全部评论 (0)
表情: 评论表情符号选择 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款
内容分类导航