您好,游客 登录 注册 站内搜索
背景颜色:
阅读论文

基于稀疏表征的降噪方法及其在振动激励控制中的应用

来源:论文联盟  作者: [字体: ]

基于稀疏表征的降噪方法及其在振动激励控制中的应用

引言
  在研究旋转机械中的轴承、齿轮等零部件的动态特性时,往往需要对该部件进行动态加载。这一过程就是一个振动控制过程。但在振动控制的过程中,扭矩传感器所采集的力信号往往会受到噪声的影响,使得加载力带有随机误差,并最终影响加载精度。因此,必须抑制这些噪声以提高加载器的加载精度。
  目前,在振动控制的降噪处理中,广泛是采用小波或小波包进行阈值降噪处理。Li和Dang提出改进的小波阈值降噪算法对无线通信信号进行降噪。Xu和Wang将小波阈值和解调技术相结合用于激光信号降噪。Chen等利用斯坦无偏风险估计组提出重叠多小波组阈值降噪方法,并应用于轧机传动系统状态监测。但是以上方法均是采用二进小波变换,这虽然能达到无冗余存贮与重建信号的目的,但随着分解层数的增加,各层、各频段序列的数据点数也减半、采样频率也减半,当数据点数太少时,信号细节会丢失,并且小波分解的结果存在着各频带间能量的交叠问题。于是,学者们提出了基于经验模式分解(本文由论文联盟http://www.LWlM.COm收集整理empiricalmode decomposition,EMD)的信号降噪方法。例如,Yang等提出了EMD区间阈值降噪方法;Tian等提出了清晰首区间阈值EMD降噪方法(clearfirst interval thresholded empirical mode decomposition,EMD-CIIT)。但是EMD存在模态混叠问题,且容易受到强噪声干扰。
  自然环境和工程中大部分噪声都是高斯白噪声,目前信号降噪方法也主要针对该类噪声。为了更好地实现自适应信号降噪,本文基于基追踪(BP)问题,采用了一种新的线性凸优化算法——SALSA算法,得到了信号的一种稀疏表示,并通过引入谱峭度作为目标函数来改进SALSA算法,从而使改进后的SALSA算法在降噪过程中具备更好的适应性,将其运用在轴承的振动控制中,降噪效果好,计算效率高。
  1 稀疏信号
  稀疏信号就是指信号可以用少数几个特征向量的线性组合进行表示。信号的稀疏表示,就是找到一种简洁的方式来表示信号,使得绝大部分变换系数的值接近于零或等于零,从而使得到的变换信号是稀疏或者近似稀疏的。
  对于某一个信号,均可以用欠定方程表示为
  y=Ax
  (1)其中,A为M×N矩阵,y为长度为M的向量,x为长度为N的向量,且N>M。
  该系统未知量的个数多于方程的个数,同时矩阵A的宽度大于其长度,当假定AA*可逆时,则方程组有无穷解。
  为解决该方程,常用的方法是基于最小二乘的方法。对于本文,为使得信号更加稀疏,采用的是基于基追踪的降噪方法(BPD)。首先需引入范数l1定义为
  (2)
  然后求解式(1)的方法就是使得x的绝对值之和最小,即基追踪(BP)问题,如下式:
  (3)
  当y含有噪声时,这种状况下,需寻求一种近似的目标函数式,该式即为基追踪降噪(BPD)问题:
  (4)
  对于传统的最小二乘法,它是求取平方和的最小值,相比求取绝对值和的最小值,其对信号中的较大值更加敏感,如图1所示。因此,当采用最小二乘法时,为保证平方和最小,需要取得少量的较大值,因为相比于小值,它们的影响更大,因此,最后求取的信号中有更多的小值,也就造成了信號的不稀疏。相反,基于基追踪降噪(BPD)的方法就不会包含很多较小值,从而会获得更加稀疏的信号。针对高斯白噪声信号,本文选用冗余傅里叶变换基进行降噪,该变换基A定义为
  (5)式中,0≤m≤M-1和0≤n≤N-1。
  2 稀疏表征算法——SALSA
  由式(4)发现,由于||x||不可微,给计算增加一定难度。并且容易发现,该问题属于凸优化问题,基于这种性质,就有内部局部最小值。此外,对于凸优化问题,目前已有很多算法能够进行求解。例如ISTA和Split Bregman迭代算法,其能够保证在每次迭代后成本函数值的减小,但是这种算法具有收敛慢的缺点。最近兴起的分离变量的增广拉格朗日收敛算法(SALSA),其与Split Bregman迭代算法均先采用了分离变量,但SALSA的解决方式是基于增广的拉格朗日模型,而该模型是解决优化问题中更基础更标准的工具。在实践的过程中也证明了该算法有很好的收敛性质。
  (6)
  为分离变量,引人中间变量。,并将。作为函数f2的自变量,这样上式就转化为以下约束问题:
  (7)
  该问题显然等价于问题(6)。欲解决该问题,可以利用增广型拉格朗日模型解决,模型如下:
  (8)式中,λ为拉格朗日乘数,μ≥0被称为惩罚参数。
  对于该增广型拉格朗日模型,可以引入序列dk,进行迭代,从而达到不断收敛的效果,迭代算法过程如下:
  (9)

欢迎浏览更多论文联盟首页声学论文声学文章
收藏 & 分享 推荐 打印 | 录入:pyuanmm

本文评论   查看全部评论 (0)
表情: 评论表情符号选择 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款
内容分类导航