您好,游客 登录 注册 站内搜索
背景颜色:
阅读论文

人工智能自我意识的觉醒

来源:论文联盟  作者: [字体: ]

人工智能自我意识的觉醒

1950年,阿兰·图灵的一篇里程碑式的论文《机器能思考吗?》为人类带来了一个新学科——人工智能。为了证明机器是否能够思考,他又发明了“图灵测试”(Turing Test),图灵测试在今天仍被沿用。
  然而,目前为止人类唯一了解的智能是人本身的智能,如果让机器也具有意识、思维、情感,这究竟是否可以做到,或者说真的达到这个目标后,会给人类带来什么影响,依然是未知数。但,这并不妨碍科学家朝着人工智能的目标前进。
  清华微电子专业毕业后在外资企业从事半导体研发,这只是江波的工作之一。更令人瞩目的是,作为中国更新代的科幻作家,从处女作《最后的游戏》到《时空追缉》,再到恢宏磅礴的《银河之心》三部曲,他用冷峻而优雅的文字、超越寻常的想象力以及对人类未来发展的终极关怀征服了一众科幻爱好者。江波认为,“将机器赋予文明,将文明赋予机器。这是人类的使命,也许是最后的使命。”这是他对人工智能的期待和展望,也是未来人工智能发展的方向。
  生物智能与自我意识
  回答这一问题,首先要提到生物智能。生物智能是目前已知唯一产生了自我意识的智能,所以它是人工智能唯一的参考。将人类和蚂蚁做比较,人类是智能生物,蚂蚁是本能生物。所谓智能,就是可以设计出各种方法适应环境;所谓本能,就是生来具有的一种能力,诸如蚂蚁生来就能筑巢觅食。
  为什么把这两种生物放在一起比较?如果把所有人类重量和蚂蚁重量都相加起来,在天平的两端,蚂蚁和人类的总质量是差不多的。所以从这个意义上来讲,两种同样成功的生物可以用来做比较,人类在分类学上属于哺乳纲灵长类人科,蚂蚁属于昆虫纲膜翅目蚁科,在纲目科属种的分类上,可以用同样的“科”级衡量。人科人属人种,事实上只有一种,但是蚂蚁有11 700余种,从这个意义上来说智能相对于本能的好处是以一敌万,一种智能生物通过调整行为方式,可以适应地球表面上的任何地形地貌,但是蚂蚁为了做到这件事情却用了11 700多种,这是智能带给生物的好处。
  生物形形色色,怎样去衡量它的自我意识?生物学家采用了“镜子实验”——就是让生物照镜子,如果它能够从镜子中辨认出影像本文由论文联盟http://www.LWlm.cOm收集整理就是自身,就通过了测试,可以认为它具备自我意识。“镜子实验”有很多模糊的地方,不算非常客观标准的测试,但作为目前研究自我意识的一个参考,它可以代表自我意识的存在。
  黑猩猩、鲸鱼、大象诸如此类可以通过镜子测试,像蚂蚁、水母等神经系统很简单的生物,不可能存在自我意识。也有两种生物在关系上和人类比较接近,一种是猴子,一种是猩猩,它们的镜子实验是什么结果?
  一只非常强壮的银背大猩猩,看到镜子当中的自己,认为是另外一个对手直接撞上去,所以它失败了。
  一只猴子从镜像中发现了自己脸上的红点,也就是说它已经通过了镜子测试。而实际上猴子是没有自我意识、不能通过镜子测试的,这只猴子的确通过了,它是怎么做到的?这只猴子是2015年中科院神经科学研究所最新的研究成果,通过某些程度的训练,让原本不具有自我意识的猴子产生一定的自我意识,从而能够辨认出镜子中的自己。
  这个研究说明,自我意识的边界具有模糊性,并不存在非黑及白的世界。从没有自我意识跨入到自我意识并没有截然的边界,最有可能的情形是这个过渡是连续而模糊的,这点非常重要。
  通过以上的实验和研究可以得出结论:自我意识并非高级智能的神秘功能,变化的环境不断推动智能向着更复杂的方向发展,当智能复杂到能意识到本体的存在,自我意识便自然产生,它是复杂智能的伴生物,学习是获取智能的唯一途径。
  现在的拟智能与未来的可能性
  既然学习是获取智能的唯一途径,那么人工智能的学习就是通过对外界环境的认识来改变自己的内在逻辑。如果这个智能体设计当中本身有一个变量是2,通外界刺激之后我认识到是6,把2改成6这不叫逻辑变换,这只是变量的变换。逻辑变换的意思是,通过环境刺激到神经系统最后接受最佳答案,对机器来说就是它的学习。
  有了对学习的定义之后,就可以定义什么是拟智能了,Google的自动驾驶汽车、亚马逊的无人机、微软小冰,这些都可以称之为拟智能,是所有不通过学习得来的智能。这些智能通过预先编制的程序锁定了它的行为是什么,它很强大,但因为是不通过自主学习得来的,所以它不会产生自我意识。
  我们生活中广泛存在的智能被称为拟智能,如果拟智能不能产生自我意识,它就不是我们担心的对象,那么什么东西是我们未来的可能性?
  第一种未来的可能性是神经网络。2004年初,Google以4亿美元(约合26亿元人民币)价格收购了一家做算法的公司,简单地说,这个算法的任务是玩游戏。一个大屏幕上方有些不断落下的方块,这个算法所控制的是一个方块,这个方块在屏幕下方前后左右可以移动,游戏目的是延长生存的时间,这个算法当中如果上方出现一个方块,叫作输入,引起下方一个动作之后这个游戏就失败了,这个神经网络能够记住这一点,在下次游戏当中尽量避免这样的动作。
  同样,如果一个输入引起动作之后,这个游戏能够延长更长的时间,它就可以获得奖励,在下一轮游戏当中,它还有可能采用同样的动作,这个就是学习的过程。它用分层结构对人类神经系统进行了很好的模拟,在神经网络深度学习的过程中,没有人预先告诉它该往哪边走,它通过不断地试错最后得到自己的最佳策略。
  未来的另外一种可能是人脑芯片,大概意思是指根据神经元的结构组合成大脑皮层,科学家已经用物理芯片实现了,它用56亿个晶体管大概模拟了100万的神经元,有2.56亿个突触。这种人脑芯片是突破性的成就,但还有两个方面的问题:第一是规模,100万的神经元听起来很多,对比140亿神经元是人脑的神经元数目,人脑的突触以万亿记,这个规模只有人脑的万分之一,但是规模一旦提出来就是时间问题。还有一个问题,算法,怎么让人脑芯片工作?一般的智能需要预先编制好它的行为方式,但是这块芯片需要的是和认知世界一样的方式,通过外界刺激修正内部逻辑编程。从这两方面来说,人脑芯片还有很长的路要走。

欢迎浏览更多论文联盟首页计算机文计算机人工智能论文文章
收藏 & 分享 推荐 打印 | 录入:yjiemm

本文评论   查看全部评论 (0)
表情: 评论表情符号选择 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款